高一数学必修二知识点归纳

解瑞静 1 2026-01-15 21:54:23

  柱、锥、台、球的结构特征几何体与体积

 (1)棱柱:

 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

 (2)棱锥

 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

 (3)棱台:

 几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点

 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。

 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。

 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。

 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。

 2、空间几何体的三视图

 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

 俯视图(从上向下)

 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

 3、空间几何体的直观图——斜二测画法

 斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;

 原来与y轴平行的线段仍然与y平行,长度为原来的一半。

 4、柱体、锥体、台体的表面积与体积

 (1)几何体的表面积为几何体各个面的面积的和。

 (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

 (3)柱体、锥体、台体的体积公式

  高中数学必修二知识点总结:直线与方程

 (1)直线的倾斜角

 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

 (2)直线的斜率

 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

 当时,;当时,;当时,不存在。

 过两点的直线的'斜率公式:

 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

 (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

 (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

 (3)直线方程

 点斜式:直线斜率k,且过点

 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

 斜截式:,直线斜率为k,直线在y轴上的截距为b

 两点式:()直线两点,

 截矩式:

 其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

 一般式:(A,B不全为0)

 注意:各式的适用范围特殊的方程如:

 (4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

 (5)直线系方程:即具有某一共同性质的直线

 (一)平行直线系

 平行于已知直线(是不全为0的常数)的直线系:(C为常数)

 (二)垂直直线系

 垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

 (三)过定点的直线系

 ()斜率为k的直线系:,直线过定点;

 ()过两条直线,的交点的直线系方程为

 (为参数),其中直线不在直线系中。

 (6)两直线平行与垂直

 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

 (7)两条直线的交点

 相交

 交点坐标即方程组的一组解。

 方程组无解;方程组有无数解与重合

 (8)两点间距离公式:设是平面直角坐标系中的两个点

 (9)点到直线距离公式:一点到直线的距离

 (10)两平行直线距离公式

 在任一直线上任取一点,再转化为点到直线的距离进行求解。

  高中数学必修二知识点总结:圆的方程

 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

 2、圆的方程

 (1)标准方程,圆心,半径为r;

 (2)一般方程

 当时,方程表示圆,此时圆心为,半径为

 当时,表示一个点;当时,方程不表示任何图形。

 (3)求圆方程的方法:

 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

 需求出a,b,r;若利用一般方程,需要求出D,E,F;

 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

 3、高中数学必修二知识点总结:直线与圆的位置关系:

 直线与圆的位置关系有相离,相切,相交三种情况:

 (1)设直线,圆,圆心到l的距离为,则有;;

 (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解

 (3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

 设圆,

 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

 当时两圆外离,此时有公切线四条;

 当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

 当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

 当时,两圆内切,连心线经过切点,只有一条公切线;

 当时,两圆内含;当时,为同心圆。

 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

 5、空间点、直线、平面的位置关系

 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

 应用:判断直线是否在平面内

 用符号语言表示公理1:

 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

 符号:平面α和β相交,交线是a,记作α∩β=a。

 符号语言:

 公理2的作用:

 它是判定两个平面相交的方法。

 它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

 它可以判断点在直线上,即证若干个点共线的重要依据。

 公理3:经过不在同一条直线上的三点,有且只有一个平面。

 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

 公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据

 公理4:平行于同一条直线的两条直线互相平行

 高中数学必修二知识点总结:空间直线与直线之间的位置关系

 异面直线定义:不同在任何一个平面内的两条直线

 异面直线性质:既不平行,又不相交。

 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

 求异面直线所成角步骤:

 A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

 (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

 (8)空间直线与平面之间的位置关系

 直线在平面内——有无数个公共点。

 三种位置关系的符号表示:aαa∩α=Aaα

 (9)平面与平面之间的位置关系:平行——没有公共点;αβ

 相交——有一条公共直线。α∩β=b

 2、空间中的平行问题

 (1)直线与平面平行的判定及其性质

 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

 线线平行线面平行

 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

 那么这条直线和交线平行。线面平行线线平行

 (2)平面与平面平行的判定及其性质

 两个平面平行的判定定理

 (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

 (线面平行→面面平行),

 (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

 (线线平行→面面平行),

 (3)垂直于同一条直线的两个平面平行,

 两个平面平行的性质定理

 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

 (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

 3、空间中的垂直问题

 (1)线线、面面、线面垂直的定义

 两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

 线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

 平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

 (2)垂直关系的判定和性质定理

 线面垂直判定定理和性质定理

 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

 面面垂直的判定定理和性质定理

 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

 4、空间角问题

 (1)直线与直线所成的角

 两平行直线所成的角:规定为。

 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

 两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

 (2)直线和平面所成的角

 平面的平行线与平面所成的角:规定为。平面的垂线与平面所成的角:规定为。

 平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

 求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

 在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

 (3)二面角和二面角的平面角

 二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

 二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

 直二面角:平面角是直角的二面角叫直二面角。

 两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

 求二面角的方法

 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

 必修二知识点总结:解三角形

 (1)正弦定理和余弦定理

 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

 (2)应用

 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

  高中数学必修二知识点总结:数列

 (1)数列的概念和简单表示法

 了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。

 了解数列是自变量为正整数的一类函数。

 (2)等差数列、等比数列

 理解等差数列、等比数列的概念。

 掌握等差数列、等比数列的通项公式与前项和公式。

 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

 了解等差数列与一次函数、等比数列与指数函数的关系。

  高中数学必修二知识点总结:不等式

  高中数学必修二知识点总结:不等关系

 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

 (2)一元二次不等式

 会从实际情境中抽象出一元二次不等式模型。

 通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。

 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

 (3)二元一次不等式组与简单线性规划问题

 会从实际情境中抽象出二元一次不等式组。

 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

高考数学知识点2023

小学数学知识汇总

图形的周长、面积、体积公式及相关知识

长方形周长 =(长+宽)×2

长方形面积 =长×宽

正方形周长 = 边长 × 4

正方形面积 = 边长×边长

三角形面积 = 底×高÷2

平行四边形面积 = 底 × 高

梯形面积 = (上底 +下底)×高÷2

圆的周长等于∏×直径或∏×半径×2 即C =∏d或C = 2∏r

圆的面积等于3.14×半径的平方。

环形的面积等于3.14×(大半径的平方-

小半径的平方)

半圆的周长 = 圆的周长的一半 + 直径

即:∏ r + 2 r

长方体的表面积 = (长×宽 + 长×高 + 宽×高)× 2

长方体的体积 = 长 × 宽 × 高

底面积×高

正方体的表面积 = 棱长×棱长× 6

正方体的体积 = 棱长×棱长×棱长

圆柱体的表面积=2个底面积 + 侧面积

侧面积=底面周长×高

圆柱体的体积 = 底面积 × 高

圆锥体的体积 = 底面积 × 高 ÷ 3

长方体和正方体都有6个面、8个顶点和12条棱。

相交于同一顶点的三条棱分别叫做长方体的长、宽、高。

正方体可以看作是特殊的长方体。

最少需要8个相同的小正方体才能拼成一个大正方体。

圆柱体上下两个底面都是圆形,而且它们的面积都相等。

圆柱体的侧面展开是长方形,它的长是圆柱底面的周长,它的高是圆柱的高。

圆锥的底面也是圆形,侧面展开是扇形。

圆柱体的体积是和它等底等高的圆锥体的体积的3倍。

大圆的半径是小圆的直径,则大圆的面积是小圆的面积的4倍。

在正方形里剪一个最大的圆,正方形的边长就是圆的直径。

在长方形里剪一个最大的圆,长方形的宽就是圆的直径。

把一个长方形拉成一个平行四边形以后,面积比原来变小了。

长方形的周长要先除以2,然后再按比例分配;而长方体的棱长总和要先除以4,然后再分配。

圆的半径扩大3倍,周长也扩大3倍,面积扩大9倍。

正方体的棱长扩大3倍,则表面积扩大9倍,体积扩大27倍。

圆柱体或圆锥体的底面半径扩大2倍,体积扩大4倍。

常见的统计图有条形统计图、折线统计图和扇形统计图。

条形统计图的特点是很容易看出各种数量的多少;折线统计图的特点是不但可以看出各种数量的多少,而且能够清楚地表示出数量增减变化的情况;扇形统计图的特点是可以清楚地表示出各部分数量和总数之间的关系

几何初步知识

直线没有端点,两端可以无限延长,不能测量长度。

射线有一个端点,一端可以无限延长,不能测量长度。

线段有两个端点,不能延长,可以测量长度。

过一点可以画无数条直线,过两点可以画一条直线。

在同一平面内,两条直线的相互位置有相交和平行两种。

在同一平面内,不相交的两条直线叫做平行线。

一个顶点和从这个顶点出发的两条射线组成的图形叫做角。

大于0度小于90度的角叫锐角;大于90度小于180度的角叫钝角。

三角形的内角和是180度;四边形的内角和是360度。

直角是90度,平角是180度,周角是360度。

三角形按角可以分为直角三角形、锐角三角形和钝角三角形。

三角形按边可分为等边三角形、等腰三角形和不等边三角形;等边三角形三条边都相等,三个角都是60度。

长方形和正方形都是特殊的平行四边形。

当圆、正方形和长方形的周长相等时,圆的面积最大,长方形的面积最小。

三角形具有稳定性,平行四边形容易变形。

等底等高的情况下,三角形的面积是平行四边形面积的一半。

圆是平面上的一种曲线图形,围成圆的曲线的长度叫做圆的周长;圆所在的平面的大小叫做圆的面积。

从圆心到圆上任意一点的线段叫做圆的半径。

通过圆心,并且两端都在圆上的线段叫做圆的直径。

顶点在圆心的角叫做圆心角;圆内最长的线段是直径。

圆有无数条半径和无数条直径。

在同一圆内,所有的半径都相等,所有的直径也都相等。

在同一圆内,直径是半径的2倍。

圆的周长与直径的比值叫做圆周率,用字母∏来表示,是祖冲之最早计算出来的。∏≈ 3.14

圆心决定了圆的位置,半径决定了圆的大小。

扇形的大小是由半径和圆心角来决定的 。

圆规两角间的距离指的是圆的半径。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就叫做轴对称图形,折痕所在的直线叫做对称轴。

圆有无数条对称轴,长方形有两条对称轴,正方形有四条对称轴,等腰三角形有一条对称轴,等边三角形有三条对称轴,等腰梯形有一条对称轴,半圆或扇形都有一条对称轴。

量的计量

常用的长度单位有千米、米、分米、厘米和毫米。

常用的面积单位有平方千米,公顷、平方米,平方分米和平方厘米。

常用的体积单位有立方米,立方分米,立方厘米。

常用的容积单位有升和毫升。1升=1000毫升。

立方分米就是升,立方厘米就是毫升。

常用的重量单位有吨,千克和克。

常用的人民币单位有元、角、分。

常用的时间单位有世纪、年、月、日、时、分、秒。

1世纪=100年,1年=12月,大月31天,小月30天。

一年有12个月,分为四个季度,每个季度三个月。

每四年中有三个平年和一个闰年。平年2月有28天,闰年2月有29天。

代数初步知识

含有未知数的等式叫做方程。

求方程的解的过程叫做解方程。

两个数相除又叫做两个数的比;表示两个比相等的式 子叫做比例。

比的后项不能为0。

比的前项除以后项的商,叫做比值。比值可以是整数、小数或分数。

比的前项和后项都乘上或除以相同的数(0除外),比值不变,叫做比的基本性质。

在比例里,两个内项的积等于两个外项的积,叫做比例的基本性质 。

图上距离和实际距离的比叫做比例尺。

比例尺有数值比例尺和线段比例尺两种。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做乘正比例的量,它们的关系叫做正比例关系。即: x ÷ y = k (一定)

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做乘反比例的量,它们的关系叫做反比例关系。即: x × y = k ( 一定 )

圆的半径和面积不成比例 和 周长成正比例。

三角形的面积一定,底和高成反比例。

比例尺一定,图上距离和实际距离成正比例。

一种商品先降价10%,再提价10%,价格比原来降低了。

甲比乙多25%,则乙比甲少20%。

数和数的运算

我们在数物体的时候,用来表示物体个数的1 ,2 ,3 …… 叫做自然数。0也是自然数,是最小的自然数,没有最大的自然数。自然数都是整数。

把单位“l”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数是这个分数的分数单位。

两个整数相除,它们的商可以用分数表示。即:a÷b = (b≠0)

分子和分母是互质数的分数叫做最简分数。

真分数的倒数一定大于1,但假分数的倒数不一定小于1。

分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变,叫做分数的基本性质。

小数的末尾添上“0”或者去掉“0”,小数的大小不变,这叫做小数的基本性质。

一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

循环节从小数部分第一位就开始的叫做纯循环小数;循环节不是从小数部分第一位开始的叫做混循环小数。

表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数没有单位。

整数a除以整数b( b≠0 ),除得的商正好是整数而没有余数,我们就说a能被b整除,或者b能整除a 。

如果a能被b整除,我们就说a是b的倍数,b是a的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它的本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

一个数,如果只有1和它本身两个约数,叫做质数。

一个数,如果除了1和它本身,还有别的约数,叫做合数。

把一个合数写成几个质数相乘的形式,叫做分解质因数。

几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

几个数公有的约数叫做这几个数的公约数,其中最大的一个数叫做这几个数的最大公约数。

公约数只有1的两个数,叫做互质数。

能被2整除的数叫做偶数,不能被2整除的数叫做奇数。一个自然数不是偶数就是奇数。

最小的偶数是0,最小的奇数是1 ,最小的质数是2 ,最小的合数是4 。

除了0和2以外,所有的偶数都是合数。

能同时被2、3、5整除的最小的两位数是30,最小的三位数是120。

一个算式,如果只含有同一级运算,要按照从左往右的顺序依次计算。如果含有两级运算,要先算乘除,后算加减。如果有括号,还要先算括号里面的,再算括号外面的。

乘积是1的两个数叫做互为倒数。

甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

利息 = 本金 × 利率 × 时间

税后利息 = 本金 × 利率 × 时间 ×80%

概念

数的读法和写法

1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4. 大小比较

1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

(五)约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

第一章 数和数的运算

(一)整数

整数的意义

自然数和0都是整数。

自然数

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。0也是自然数。

计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

(三)分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2023有哪些?一起来看看高考数学知识点2023,欢迎查阅!

高中数学各知识点公式定理记忆口诀

集合与函数

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

三角函数

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

不等式

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

数列

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

复数

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

立体几何

点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

平面解析几何

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者―一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三数学 复习重要知识点

知识点1

1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

知识点2

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

三、知识扩展

1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

高考数学复习重点 总结

第一,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二,平面向量和三角函数

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三,数列

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四,空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

第五,概率和统计

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六,解析几何

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七,押轴题

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点2023相关 文章 :

★ 2021年数学高考知识点

★ 高中数学知识点总结归纳最新

★ 高考数学知识点大全

★ 高考数学知识点总结归纳

★ 高考数学知识点归纳整理

★ 高考数学知识点总结最新整理

★ 2020高考数学知识点总结大全

★ 高考数学必考知识点最新整理

★ 2020高考数学知识点大全

★ 2020高考文科数学知识点

上一篇:四年级上快乐读书吧必读书目
下一篇:已是最新文章
相关文章